torch.mul和*等价(attetion中可以用到) 每行乘上不同元素
>>> a = torch.ones(3,4) >>> a tensor([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) >>> b = torch.Tensor([1,2,3]).reshape((3,1)) >>> b tensor([[1.], [2.], [3.]]) >>> a * b tensor([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]])
每列乘上不同元素
>>> a = torch.ones(3,4) >>> a tensor([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) >>> b = torch.Tensor([1,2,3,4]).reshape((1,4)) >>> b tensor([[1., 2., 3., 4.]]) >>> a*b tensor([[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]) >>> torch.mul(a,b) tensor([[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]])
带batch(mul和*会自动broadcaset到所以batch)
>>> a=torch.ones(2,3,4) >>> a tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]],
[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]) >>> b = torch.Tensor([1,2,3,4]).reshape((1,4)) >>> b tensor([[1., 2., 3., 4.]]) >>> a*b tensor([[[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]],
[[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]]) >>> torch.mul(a,b) tensor([[[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]],
[[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]])
此外还有针对矩阵的乘法如:torch.dot() torch.mm() torch.bmm() torch.dot()是针对一维的向量进行点积。
In [252]: a=torch.randn(2,3)
In [253]: b=torch.randn(3,2)
In [254]: torch.dot(a,b) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-254-4939a8ae602a> in <module>() ----> 1 torch.dot(a,b)
RuntimeError: dot: Expected 1-D argument self, but got 2-D
In [255]: a=torch.randn(3)
In [256]: b=torch.randn(3)
In [257]: torch.dot(a,b) Out[257]: tensor(0.0967)
torch.mm是针对矩阵的点积(只针对2维)
In [258]: a=torch.randn(2,3)
In [259]: b=torch.randn(3,2)
In [260]: torch.mm(a,b) Out[260]: tensor([[-1.2849, 0.1272], [ 0.0600, -0.3183]])
In [261]: torch.mm(a,b).size() Out[261]: torch.Size([2, 2])
torch.bmm()是针对一个batch的二维矩阵进行点积(假设batch_size=2)
In [262]: a=torch.randn(2,2,3)
In [263]: b=torch.randn(2,3,2)
In [264]: torch.mm(a,b).size() --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-264-6bdb1a27d804> in <module>() ----> 1 torch.mm(a,b).size()
RuntimeError: matrices expected, got 3D, 3D tensors at /Users/soumith/code/builder/wheel/pytorch-src/aten/src/TH/generic/THTensorMath.cpp:2065
In [265]: torch.bmm(a,b).size() Out[265]: torch.Size([2, 2, 2])
那么如果维度大于3,我们要针对数据集中单个的矩阵进行点积怎么办呢?比如在多头attention中,batch=2,head=2 torch.matmul只针对最后俩个维度进行点积。
In [266]: b=torch.randn(2,2,3,2)
In [267]: a=torch.randn(2,2,2,3)
In [268]: torch.bmm(a,b).size() --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-268-3084f0e99edf> in <module>() ----> 1 torch.bmm(a,b).size()
RuntimeError: invalid argument 1: expected 3D tensor, got 4D at /Users/soumith/code/builder/wheel/pytorch-src/aten/src/TH/generic/THTensorMath.cpp:2304
In [269]: torch.matmul(a,b).size() Out[269]: torch.Size([2, 2, 2, 2])
In [270]: a=torch.randn(2,2,3)
In [271]: b=torch.randn(2,3,2)
In [272]: torch.matmul(a,b).size() Out[272]: torch.Size([2, 2, 2])
可以matmul同样可以实现bmm